{ "id": "1005.4319", "version": "v1", "published": "2010-05-24T12:27:15.000Z", "updated": "2010-05-24T12:27:15.000Z", "title": "A generalization of the weak amenability of some Banach algebra", "authors": [ "Kazem Haghnejad Azar" ], "categories": [ "math.FA" ], "abstract": "Let $A$ be a Banach algebra and $A^{**}$ be the second dual of it. We show that by some new conditions, $A$ is weakly amenable whenever $A^{**}$ is weakly amenable. We will study this problem under generalization, that is, if $(n+2)-th$ dual of $A$, $A^{(n+2)}$, is $T-S-$weakly amenable, then $A^{(n)}$ is $T-S-$weakly amenable where $T$ and $S$ are continuous linear mappings from $A^{(n)}$ into $A^{(n)}$.", "revisions": [ { "version": "v1", "updated": "2010-05-24T12:27:15.000Z" } ], "analyses": { "subjects": [ "46L06", "46L07", "46L10", "47L25" ], "keywords": [ "banach algebra", "weak amenability", "generalization", "weakly amenable", "second dual" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.4319H" } } }