{ "id": "1005.4239", "version": "v1", "published": "2010-05-23T23:51:26.000Z", "updated": "2010-05-23T23:51:26.000Z", "title": "Boundary Behavior of Non-Negative Solutions of the Heat Equation in Sub-Riemannian Spaces", "authors": [ "Isidro H Munive" ], "categories": [ "math.AP" ], "abstract": "We prove Fatou type theorems for solutions of the heat equation in sub- Riemannian spaces. The doubling property of L-caloric measure, the Dahlberg estimate, the local comparison theorem, among other results, are established here. A backward Harnack inequality is proved for non-negative solutions vanishing in the lateral boundary.", "revisions": [ { "version": "v1", "updated": "2010-05-23T23:51:26.000Z" } ], "analyses": { "subjects": [ "35K10", "35B05", "31B25" ], "keywords": [ "heat equation", "non-negative solutions", "boundary behavior", "sub-riemannian spaces", "fatou type theorems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.4239M" } } }