{ "id": "1005.3982", "version": "v1", "published": "2010-05-21T15:16:57.000Z", "updated": "2010-05-21T15:16:57.000Z", "title": "Curves on threefolds and a conjecture of Griffiths-Harris", "authors": [ "G. V. Ravindra" ], "comment": "14 pages", "journal": "Mathematische Annalen Volume 345, Number 3 / November 2009, 731-748", "doi": "10.1007/s00208-009-0376-y", "categories": [ "math.AG" ], "abstract": "We prove that any arithmetically Gorenstein curve on a smooth, general hypersurface $X\\subset \\bbP^{4}$ of degree at least 6, is a complete intersection. This gives a characterisation of complete intersection curves on general type hypersurfaces in $\\bbP^4$. We also verify that certain 1-cycles on a general quintic hypersurface are non-trivial elements of the Griffiths group.", "revisions": [ { "version": "v1", "updated": "2010-05-21T15:16:57.000Z" } ], "analyses": { "subjects": [ "14M10", "14C25" ], "keywords": [ "conjecture", "griffiths-harris", "threefolds", "complete intersection curves", "general type hypersurfaces" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.3982R" } } }