{ "id": "1005.3624", "version": "v1", "published": "2010-05-20T08:14:25.000Z", "updated": "2010-05-20T08:14:25.000Z", "title": "On Arithmetic Progressions in Recurrences - A new characterization of the Fibonacci sequence", "authors": [ "Akos Pinter", "Volker Ziegler" ], "categories": [ "math.NT" ], "abstract": "We show that essentially the Fibonacci sequence is the unique binary recurrence which contains infinitely many three-term arithmetic progressions. A criterion for general linear recurrences having infinitely many three-term arithmetic progressions is also given.", "revisions": [ { "version": "v1", "updated": "2010-05-20T08:14:25.000Z" } ], "analyses": { "subjects": [ "11B25", "11B39", "11J87" ], "keywords": [ "fibonacci sequence", "three-term arithmetic progressions", "characterization", "unique binary recurrence", "general linear recurrences" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.3624P" } } }