{ "id": "1005.3448", "version": "v2", "published": "2010-05-19T14:13:51.000Z", "updated": "2010-07-09T13:44:10.000Z", "title": "On Hall's conjecture", "authors": [ "Andrej Dujella" ], "comment": "7 pages, minor changes, to appear in Acta Arith", "journal": "Acta Arith. 147 (2011), 397-402", "doi": "10.4064/aa147-4-5", "categories": [ "math.NT", "math.AG" ], "abstract": "We show that for any even positive integer d there exist polynomials x and y with integer coefficients such that deg(x) = 2d, deg(y) = 3d and deg(x^3 - y^2) = d + 5.", "revisions": [ { "version": "v2", "updated": "2010-07-09T13:44:10.000Z" } ], "analyses": { "subjects": [ "11C08", "11D25", "11D75" ], "keywords": [ "halls conjecture", "integer coefficients", "positive integer" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.3448D" } } }