{ "id": "1005.3134", "version": "v1", "published": "2010-05-18T09:53:16.000Z", "updated": "2010-05-18T09:53:16.000Z", "title": "A certain minimization property implies a certain integrability", "authors": [ "Marie-Claude Arnaud" ], "categories": [ "math.DS" ], "abstract": "The manifold M being compact and connected and H being a Tonelli Hamiltonian such that the cotangent bundle of M is equal to the dual tiered Mane set, we prove that there is a partition of the cotangent bundle of M into invariant C0 Lagrangian graphs. Moreover, among these graphs, those that are C1 cover a residual subset of this cotangent bundle The dynamic restricted to each of these sets is non wandering.", "revisions": [ { "version": "v1", "updated": "2010-05-18T09:53:16.000Z" } ], "analyses": { "keywords": [ "minimization property implies", "cotangent bundle", "integrability", "invariant c0 lagrangian graphs", "dual tiered mane set" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.jde.2010.12.002", "journal": "Journal of Differential Equations", "year": 2011, "month": "Mar", "volume": 250, "number": 5, "pages": 2389 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011JDE...250.2389A" } } }