{ "id": "1005.2088", "version": "v1", "published": "2010-05-12T13:25:35.000Z", "updated": "2010-05-12T13:25:35.000Z", "title": "Logarithmic two-point correlators in the Abelian sandpile model", "authors": [ "V. S. Poghosyan", "S. Y. Grigorev", "V. B. Priezzhev", "P. Ruelle" ], "comment": "28 pages", "journal": "J.Stat.Mech.1007:P07025,2010", "doi": "10.1088/1742-5468/2010/07/P07025", "categories": [ "cond-mat.stat-mech", "hep-th", "math-ph", "math.MP" ], "abstract": "We present the detailed calculations of the asymptotics of two-site correlation functions for height variables in the two-dimensional Abelian sandpile model. By using combinatorial methods for the enumeration of spanning trees, we extend the well-known result for the correlation $\\sigma_{1,1} \\simeq 1/r^4$ of minimal heights $h_1=h_2=1$ to $\\sigma_{1,h} = P_{1,h}-P_1P_h$ for height values $h=2,3,4$. These results confirm the dominant logarithmic behaviour $\\sigma_{1,h} \\simeq (c_h\\log r + d_h)/r^4 + {\\cal O}(r^{-5})$ for large $r$, predicted by logarithmic conformal field theory based on field identifications obtained previously. We obtain, from our lattice calculations, the explicit values for the coefficients $c_h$ and $d_h$ (the latter are new).", "revisions": [ { "version": "v1", "updated": "2010-05-12T13:25:35.000Z" } ], "analyses": { "subjects": [ "05.65.+b" ], "keywords": [ "logarithmic two-point correlators", "logarithmic conformal field theory", "two-site correlation functions", "two-dimensional abelian sandpile model", "dominant logarithmic behaviour" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Statistical Mechanics: Theory and Experiment", "year": 2010, "month": "Jul", "volume": 2010, "number": 7, "pages": 7025 }, "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "inspire": 855848, "adsabs": "2010JSMTE..07..025P" } } }