{ "id": "1005.1842", "version": "v1", "published": "2010-05-11T14:23:02.000Z", "updated": "2010-05-11T14:23:02.000Z", "title": "$L^\\infty$ to $L^p$ constants for Riesz projections", "authors": [ "Jordi Marzo", "Kristian Seip" ], "categories": [ "math.FA", "math.CV" ], "abstract": "The norm of the Riesz projection from $L^\\infty(\\T^n)$ to $L^p(\\T^n)$ is considered. It is shown that for $n=1$, the norm equals $1$ if and only if $p\\le 4$ and that the norm behaves asymptotically as $p/(\\pi e)$ when $p\\to \\infty$. The critical exponent $p_n$ is the supremum of those $p$ for which the norm equals $1$. It is proved that $2+2/(2^n-1)\\le p_n <4$ for $n>1$; it is unknown whether the critical exponent for $n=\\infty$ exceeds $2$.", "revisions": [ { "version": "v1", "updated": "2010-05-11T14:23:02.000Z" } ], "analyses": { "subjects": [ "41A44", "42B05", "46E30" ], "keywords": [ "riesz projection", "norm equals", "critical exponent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.1842M" } } }