{ "id": "1005.1492", "version": "v1", "published": "2010-05-10T11:11:47.000Z", "updated": "2010-05-10T11:11:47.000Z", "title": "Higher order Riesz transforms in the ultraspherical setting as principal value integral operators", "authors": [ "Jorge J. Betancor", "Juan C. Fariña", "Lourdes Rodríguez-Mesa", "Ricardo Testoni" ], "categories": [ "math.CA" ], "abstract": "In this paper we represent the $k$-th Riesz transform in the ultraspherical setting as a principal value integral operator for every $k\\in \\mathbb{N}$. We also measure the speed of convergence of the limit by proving $L^p$-boundedness properties for the oscillation and variation operators associated with the corresponding truncated operators.", "revisions": [ { "version": "v1", "updated": "2010-05-10T11:11:47.000Z" } ], "analyses": { "subjects": [ "42C05", "42C15" ], "keywords": [ "principal value integral operator", "higher order riesz transforms", "ultraspherical setting", "th riesz transform", "boundedness properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.1492B" } } }