{ "id": "1005.1306", "version": "v1", "published": "2010-05-07T22:33:09.000Z", "updated": "2010-05-07T22:33:09.000Z", "title": "Stein's method, heat kernel, and traces of powers of elements of compact Lie groups", "authors": [ "Jason Fulman" ], "comment": "17 pages", "categories": [ "math.PR", "math-ph", "math.CO", "math.MP" ], "abstract": "Combining Stein's method with heat kernel techniques, we show that the trace of the jth power of an element of U(n,C), USp(n,C) or SO(n,R) has a normal limit with error term of order j/n. In contrast to previous works, here j may be growing with n. The technique should prove useful in the study of the value distribution of approximate eigenfunctions of Laplacians.", "revisions": [ { "version": "v1", "updated": "2010-05-07T22:33:09.000Z" } ], "analyses": { "keywords": [ "compact lie groups", "heat kernel techniques", "jth power", "combining steins method", "normal limit" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "inspire": 854896, "adsabs": "2010arXiv1005.1306F" } } }