{ "id": "1005.1210", "version": "v2", "published": "2010-05-07T14:08:58.000Z", "updated": "2010-07-13T10:40:45.000Z", "title": "Arithmetic progressions in Salem-type subsets of the integers", "authors": [ "Paul Potgieter" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "Given a subset of the integers of zero density, we define the weaker notion of fractional density of such a set. It is shown how this notion corresponds to that of the Hausdorff dimension of a compact subset of the reals. We then show that a version of a theorem of {\\L}aba and Pramanik on 3-term arithmetic progressions in subsets of the unit interval also holds for subsets of the integers with fractional density and satisfying certain Fourier-decay conditions.", "revisions": [ { "version": "v2", "updated": "2010-07-13T10:40:45.000Z" } ], "analyses": { "subjects": [ "42B05", "11B25", "28A78", "26E35" ], "keywords": [ "arithmetic progressions", "salem-type subsets", "fractional density", "notion corresponds", "unit interval" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.1210P" } } }