{ "id": "1005.0980", "version": "v1", "published": "2010-05-06T11:20:00.000Z", "updated": "2010-05-06T11:20:00.000Z", "title": "Number of singular points of an annulus in $\\mathbb{C}^2$", "authors": [ "Maciej Borodzik", "Henryk Zoladek" ], "comment": "15 pages, to appear in Ann. Inst. Fourier", "categories": [ "math.AG" ], "abstract": "Using Bogomolov-Miyaoka-Yau inequality and a Milnor number bound we prove that any algebraic annulus $\\mathbb{C}^*$ in $\\mathbb{C}^2$ with no self-intersections can have at most three cuspidal singularities.", "revisions": [ { "version": "v1", "updated": "2010-05-06T11:20:00.000Z" } ], "analyses": { "subjects": [ "14H50", "14R10", "14B05" ], "keywords": [ "singular points", "milnor number bound", "bogomolov-miyaoka-yau inequality", "algebraic annulus" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.0980B" } } }