{ "id": "1005.0831", "version": "v2", "published": "2010-05-05T19:46:02.000Z", "updated": "2015-10-22T12:25:46.000Z", "title": "The index of centralizers of elements of reductive Lie algebras", "authors": [ "Jean-Yves Charbonnel", "Anne Moreau" ], "comment": "duplicate of arXiv:0904.1778", "journal": "Documenta Mathematica 15 (2010) 347-380", "categories": [ "math.RT" ], "abstract": "same as arXiv:0904.1778", "revisions": [ { "version": "v1", "updated": "2010-05-05T19:46:02.000Z", "abstract": "For a finite dimensional complex Lie algebra, its index is the minimal dimension of stabilizers for the coadjoint action. A famous conjecture due to Elashvili says that the index of the centralizer of an element of a reductive Lie algebra is equal to the rank. That conjecture caught attention of several Lie theorists for years. In this paper we give an almost general proof of that conjecture.", "comment": "28 pages in English", "doi": null }, { "version": "v2", "updated": "2015-10-22T12:25:46.000Z" } ], "analyses": { "keywords": [ "reductive lie algebra", "centralizer", "finite dimensional complex lie algebra", "conjecture caught attention", "minimal dimension" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.0831C" } } }