{ "id": "1005.0447", "version": "v3", "published": "2010-05-04T06:28:43.000Z", "updated": "2010-10-27T07:37:07.000Z", "title": "The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential", "authors": [ "Radjesvarane Alexandre", "Y. Morimoto", "Seiji Ukai", "Chao-Jiang Xu", "Tong Yang" ], "categories": [ "math.AP" ], "abstract": "As a continuation of our series works on the Boltzmann equation without angular cutoff assumption, in this part, the global existence of solution to the Cauchy problem in the whole space is proved in some suitable weighted Sobolev spaces for hard potential when the solution is a small perturbation of a global equilibrium.", "revisions": [ { "version": "v3", "updated": "2010-10-27T07:37:07.000Z" } ], "analyses": { "keywords": [ "global existence", "boltzmann equation", "hard potential", "angular cutoff assumption", "small perturbation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.0447A" } } }