{ "id": "1004.5507", "version": "v1", "published": "2010-04-30T11:45:42.000Z", "updated": "2010-04-30T11:45:42.000Z", "title": "Pointwise Characterizations of Besov and Triebel-Lizorkin Spaces and Quasiconformal Mappings", "authors": [ "Pekka Koskela", "Dachun Yang", "Yuan Zhou" ], "journal": "Advance in Math. 226 (2011) 3579-3621", "categories": [ "math.CA", "math.AP", "math.FA" ], "abstract": "In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces $\\dot B^s_{p,\\,q}$ and Triebel-Lizorkin spaces $\\dot F^s_{p,\\,q}$ for all $s\\in(0,\\,1)$ and $p,\\,q\\in(n/(n+s),\\,\\infty],$ both in ${\\mathbb R}^n$ and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve $\\dot F^s_{n/s,\\,q}$ on $\\rn$ for all $s\\in(0,\\,1)$ and $q\\in(n/(n+s),\\,\\infty]$. A metric measure space version of the above morphism property is also established.", "revisions": [ { "version": "v1", "updated": "2010-04-30T11:45:42.000Z" } ], "analyses": { "subjects": [ "30C65", "42B35", "42B25", "46E35", "30L10" ], "keywords": [ "triebel-lizorkin spaces", "pointwise characterizations", "metric measure space version", "quasiconformal mappings preserve", "metric measure spaces enjoying" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.5507K" } } }