{ "id": "1004.5270", "version": "v2", "published": "2010-04-29T13:18:50.000Z", "updated": "2010-09-10T13:23:22.000Z", "title": "There is no minimal action of Z^2 on the plane", "authors": [ "Frédéric Le Roux" ], "categories": [ "math.DS" ], "abstract": "In this paper it is proved that there is no minimal action (i.e. every orbit is dense) of Z^2 on the plane. The proof uses the non-existence of minimal homeomorphisms on the infinite annulus (Le Calvez-Yoccoz's theorem), and the theory of Brouwer homeomorphisms.", "revisions": [ { "version": "v2", "updated": "2010-09-10T13:23:22.000Z" } ], "analyses": { "keywords": [ "minimal action", "calvez-yoccozs theorem", "infinite annulus", "brouwer homeomorphisms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.5270L" } } }