{ "id": "1004.5203", "version": "v3", "published": "2010-04-29T06:51:14.000Z", "updated": "2011-05-18T11:46:43.000Z", "title": "Opdam's hypergeometric functions: product formula and convolution structure in dimension 1", "authors": [ "Jean-Philippe Anker", "Fatma Ayadi", "Mohamed Sifi" ], "comment": "Adv. Pure Appl. Math. (2011) 27 pp", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $G_{\\lambda}^{(\\alpha,\\beta)}$ be the eigenfunctions of the Dunkl-Cherednik operator $T^{(\\alpha,\\beta)}$ on $\\mathbb{R}$. In this paper we express the product $G_{\\lambda}^{(\\alpha,\\beta)}(x)G_{\\lambda}^{(\\alpha,\\beta)}(y)$ as an integral in terms of $G_{\\lambda}^{(\\alpha,\\beta)}(z)$ with an explicit kernel. In general this kernel is not positive. Furthermore, by taking the so-called rational limit, we recover the product formula of M. R\\\"osler for the Dunkl kernel. We then define and study a convolution structure associated to $G_{\\lambda}^{(\\alpha,\\beta)}$.", "revisions": [ { "version": "v3", "updated": "2011-05-18T11:46:43.000Z" } ], "analyses": { "keywords": [ "opdams hypergeometric functions", "product formula", "dunkl-cherednik operator", "explicit kernel", "rational limit" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.5203A" } } }