{ "id": "1004.5067", "version": "v1", "published": "2010-04-28T15:56:24.000Z", "updated": "2010-04-28T15:56:24.000Z", "title": "The visible part of plane self-similar sets", "authors": [ "Kenneth J. Falconer", "Jonathan M. Fraser" ], "journal": "Proc. Amer. Math. Soc., 141, (2013), 269-278", "categories": [ "math.MG" ], "abstract": "Given a compact subset $F$ of $\\mathbb{R}^2$, the visible part $V_\\theta F$ of $F$ from direction $\\theta$ is the set of $x$ in $F$ such that the half-line from $x$ in direction $\\theta$ intersects $F$ only at $x$. It is suggested that if $\\dim_H F \\geq 1$ then $\\dim_H V_\\theta F = 1$ for almost all $\\theta$, where $\\dim_H$ denotes Hausdorff dimension. We confirm this when $F$ is a self-similar set satisfying the convex open set condition and such that the orthogonal projection of $F$ onto every line is an interval. In particular the underlying similarities may involve arbitrary rotations and $F$ need not be connected.", "revisions": [ { "version": "v1", "updated": "2010-04-28T15:56:24.000Z" } ], "analyses": { "subjects": [ "28A80" ], "keywords": [ "plane self-similar sets", "visible part", "convex open set condition", "denotes hausdorff dimension", "compact subset" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.5067F" } } }