{ "id": "1004.4953", "version": "v2", "published": "2010-04-28T05:02:31.000Z", "updated": "2010-05-14T21:55:25.000Z", "title": "The Number of Eigenvalues of a Tensor", "authors": [ "Dustin Cartwright", "Bernd Sturmfels" ], "comment": "12 pages, fixed several typos", "categories": [ "math.NA", "math.AG" ], "abstract": "Eigenvectors of tensors, as studied recently in numerical multilinear algebra, correspond to fixed points of self-maps of a projective space. We determine the number of eigenvectors and eigenvalues of a generic tensor, and we show that the number of normalized eigenvalues of a symmetric tensor is always finite. We also examine the characteristic polynomial and how its coefficients are related to discriminants and resultants.", "revisions": [ { "version": "v2", "updated": "2010-05-14T21:55:25.000Z" } ], "analyses": { "subjects": [ "15A18", "15A69", "14M25" ], "keywords": [ "eigenvectors", "numerical multilinear algebra", "generic tensor", "symmetric tensor", "characteristic polynomial" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.4953C" } } }