{ "id": "1004.4798", "version": "v1", "published": "2010-04-27T13:34:03.000Z", "updated": "2010-04-27T13:34:03.000Z", "title": "Superatomic Boolean algebras constructed from strongly unbounded functions", "authors": [ "Juan Carlos Martinez", "Lajos Soukup" ], "comment": "13 pages", "categories": [ "math.LO" ], "abstract": "Using Koszmider's strongly unbounded functions, we show the following consistency result: Suppose that $\\kappa,\\lambda$ are infinite cardinals such that $\\kappa^{+++} \\leq \\lambda$, $\\kappa^{<\\kappa}=\\kappa$ and $2^{\\kappa}= \\kappa^+$, and $\\eta$ is an ordinal with $\\kappa^+\\leq \\eta <\\kappa^{++}$ and $cf(\\eta) = \\kappa^+$. Then, in some cardinal-preserving generic extension there is a superatomic Boolean algebra $B$ such that - $ht(B) = \\eta + 1$, - the cardinality of the $\\alpha$th level of $B$ is $\\kappa$ for every $\\alpha <\\eta$, - and the cardinality of the $\\eta$th level of $B$ is $\\lambda$ Especially, $\\<{\\omega}\\>_{{\\omega}_1}\\concatenation \\<{\\omega}_3\\>$ and $\\<{\\omega}_1\\>_{{\\omega}_2}\\concatenation \\<{\\omega}_4\\>$ can be cardinal sequences of superatomic Boolean algebras.", "revisions": [ { "version": "v1", "updated": "2010-04-27T13:34:03.000Z" } ], "analyses": { "subjects": [ "03E35", "06E05", "54A25", "54G12" ], "keywords": [ "superatomic boolean algebras", "th level", "cardinal-preserving generic extension", "koszmiders strongly unbounded functions", "cardinal sequences" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.4798M" } } }