{ "id": "1004.4401", "version": "v2", "published": "2010-04-26T02:21:33.000Z", "updated": "2010-05-27T18:48:26.000Z", "title": "Asymptotics of Weil-Petersson geodesics II: bounded geometry and unbounded entropy", "authors": [ "Jeffrey Brock", "Howard Masur", "Yair Minsky" ], "comment": "39 Pages, 3 figures. Minor revisions", "categories": [ "math.GT" ], "abstract": "We use ending laminations for Weil-Petersson geodesics to establish that bounded geometry is equivalent to bounded combinatorics for Weil-Petersson geodesic segments, rays, and lines. Further, a more general notion of non-annular bounded combinatorics, which allows arbitrarily large Dehn-twisting, corresponds to an equivalent condition for Weil-Petersson geodesics. As an application, we show the Weil-Petersson geodesic flow has compact invariant subsets with arbitrarily large topological entropy.", "revisions": [ { "version": "v2", "updated": "2010-05-27T18:48:26.000Z" } ], "analyses": { "subjects": [ "30F60", "37D40" ], "keywords": [ "bounded geometry", "unbounded entropy", "asymptotics", "weil-petersson geodesic segments", "compact invariant subsets" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.4401B" } } }