{ "id": "1004.2585", "version": "v3", "published": "2010-04-15T09:20:02.000Z", "updated": "2011-09-15T19:25:34.000Z", "title": "Equidistribution results for geodesic flows", "authors": [ "Abdelhamid Amroun" ], "comment": "25 pages", "doi": "10.1017/etds.2012.153", "categories": [ "math.DS", "math-ph", "math.MP", "math.PR" ], "abstract": "Using the works of Ma\\~n\\'e \\cite{Ma} and Paternain \\cite{Pat} we study the distribution of geodesic arcs with respect to equilibrium states of the geodesic flow on a closed manifold, equipped with a $\\mathcal{C}^{\\infty}$ Riemannian metric. We prove large deviations lower and upper bounds and a contraction principle for the geodesic flow in the space of probability measures of the unit tangent bundle. We deduce a way of approximating equilibrium states for continuous potentials.", "revisions": [ { "version": "v3", "updated": "2011-09-15T19:25:34.000Z" } ], "analyses": { "subjects": [ "37D35" ], "keywords": [ "geodesic flow", "equidistribution results", "large deviations lower", "unit tangent bundle", "riemannian metric" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.2585A" } } }