{ "id": "1004.2438", "version": "v2", "published": "2010-04-14T16:15:47.000Z", "updated": "2016-09-13T09:02:45.000Z", "title": "Random-matrix theory of thermal conduction in superconducting quantum dots", "authors": [ "J. P. Dahlhaus", "B. Béri", "C. W. J. Beenakker" ], "comment": "8 pages, 6 figures; V2: corrected typo (missing absolute value sign in exponent) in equation 5", "journal": "Phys. Rev. B 82, 014536 (2010)", "doi": "10.1103/PhysRevB.82.014536", "categories": [ "cond-mat.mes-hall" ], "abstract": "We calculate the probability distribution of the transmission eigenvalues T_n of Bogoliubov quasiparticles at the Fermi level in an ensemble of chaotic Andreev quantum dots. The four Altland-Zirnbauer symmetry classes (determined by the presence or absence of time-reversal and spin-rotation symmetry) give rise to four circular ensembles of scattering matrices. We determine P({T_n}) for each ensemble, characterized by two symmetry indices \\beta and \\gamma . For a single d-fold degenerate transmission channel we thus obtain the distribution P(g) ~ g^{-1+\\beta /2}(1-g)^{\\gamma /2} of the thermal conductance g (in units of d \\pi ^2 k_B^2 T_0/6h at low temperatures T_0). We show how this single-channel limit can be reached using a topological insulator or superconductor, without running into the problem of fermion doubling.", "revisions": [ { "version": "v1", "updated": "2010-04-14T16:15:47.000Z", "comment": "8 pages, 6 figures" }, { "version": "v2", "updated": "2016-09-13T09:02:45.000Z" } ], "analyses": { "subjects": [ "74.25.fc", "05.45.Mt", "65.80.-g", "74.45.+c" ], "keywords": [ "superconducting quantum dots", "random-matrix theory", "thermal conduction", "single d-fold degenerate transmission channel", "chaotic andreev quantum dots" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. B", "year": 2010, "month": "Jul", "volume": 82, "number": 1, "pages": "014536" }, "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010PhRvB..82a4536D" } } }