{ "id": "1004.2422", "version": "v2", "published": "2010-04-14T15:42:09.000Z", "updated": "2010-09-22T13:23:27.000Z", "title": "The Myhill property for strongly irreducible subshifts over amenable groups", "authors": [ "Tullio Ceccherini-Silberstein", "Michel Coornaert" ], "journal": "Monatsh. Math. 165 (2012), 155-172", "categories": [ "math.DS", "math.GR" ], "abstract": "Let $G$ be an amenable group and let $A$ be a finite set. We prove that if $X \\subset A^G$ is a strongly irreducible subshift then $X$ has the Myhill property, that is, every pre-injective cellular automaton $\\tau \\colon X \\to X$ is surjective.", "revisions": [ { "version": "v2", "updated": "2010-09-22T13:23:27.000Z" } ], "analyses": { "subjects": [ "37B10", "37B15", "68Q80", "43A07" ], "keywords": [ "strongly irreducible subshift", "myhill property", "amenable group", "finite set" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.2422C" } } }