{ "id": "1004.2415", "version": "v2", "published": "2010-04-14T15:09:07.000Z", "updated": "2010-07-09T16:54:03.000Z", "title": "Products of random matrices and generalised quantum point scatterers", "authors": [ "Alain Comtet", "Christophe Texier", "Yves Tourigny" ], "comment": "38 pages, 13 pdf figures. V2 : conclusion added ; Definition of function $\\Omega$ changed", "journal": "J. Stat. Phys. 140(3), 427-466 (2010)", "doi": "10.1007/s10955-010-0005-x", "categories": [ "cond-mat.dis-nn", "math-ph", "math.MP" ], "abstract": "To every product of $2\\times2$ matrices, there corresponds a one-dimensional Schr\\\"{o}dinger equation whose potential consists of generalised point scatterers. Products of {\\em random} matrices are obtained by making these interactions and their positions random. We exhibit a simple one-dimensional quantum model corresponding to the most general product of matrices in $\\text{SL}(2, {\\mathbb R})$. We use this correspondence to find new examples of products of random matrices for which the invariant measure can be expressed in simple analytical terms.", "revisions": [ { "version": "v2", "updated": "2010-07-09T16:54:03.000Z" } ], "analyses": { "keywords": [ "generalised quantum point scatterers", "random matrices", "simple one-dimensional quantum model corresponding", "potential consists" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Statistical Physics", "year": 2010, "month": "Aug", "volume": 140, "number": 3, "pages": 427 }, "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010JSP...140..427C" } } }