{ "id": "1004.2398", "version": "v1", "published": "2010-04-14T14:02:38.000Z", "updated": "2010-04-14T14:02:38.000Z", "title": "Mirror coupling of reflecting Brownian motion and an application to Chavel's conjecture", "authors": [ "Mihai N. Pascu" ], "comment": "21 pages, 3 figures", "categories": [ "math.PR" ], "abstract": "In a series of papers, Burdzy et. al. introduced the \\emph{mirror coupling} of reflecting Brownian motions in a smooth bounded domain $D\\subset \\mathbb{R}^{d}$, and used it to prove certain properties of eigenvalues and eigenfunctions of the Neumann Laplaceian on $D$. In the present paper we show that the construction of the mirror coupling can be extended to the case when the two Brownian motions live in different domains $D_{1},D_{2}\\subset \\mathbb{R}^{d}$. As an application of the construction, we derive a unifying proof of the two main results concerning the validity of Chavel's conjecture on the domain monotonicity of the Neumann heat kernel, due to I. Chavel (\\cite{Chavel}), respectively W. S. Kendall (\\cite{Kendall}).", "revisions": [ { "version": "v1", "updated": "2010-04-14T14:02:38.000Z" } ], "analyses": { "subjects": [ "60J65", "60H20", "35K05" ], "keywords": [ "reflecting brownian motion", "chavels conjecture", "mirror coupling", "application", "neumann heat kernel" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.2398P" } } }