{ "id": "1004.1623", "version": "v1", "published": "2010-04-09T18:50:18.000Z", "updated": "2010-04-09T18:50:18.000Z", "title": "Autocorrelations of the characteristic polynomial of a random matrix under microscopic scaling", "authors": [ "Rowan Killip", "Eric Ryckman" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We calculate the autocorrelation function for the characteristic polynomial of a random matrix in the microscopic scaling regime. While results fitting this description have be proved before, we will cover all values of inverse temperature $\\beta \\in (0,\\infty)$. The method also differs from prior work, relying on matrix models introduced by Killip and Nenciu.", "revisions": [ { "version": "v1", "updated": "2010-04-09T18:50:18.000Z" } ], "analyses": { "subjects": [ "60B20" ], "keywords": [ "random matrix", "characteristic polynomial", "microscopic scaling regime", "autocorrelation function", "inverse temperature" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.1623K" } } }