{ "id": "1004.1251", "version": "v1", "published": "2010-04-08T06:28:18.000Z", "updated": "2010-04-08T06:28:18.000Z", "title": "Long-range percolation on the hierarchical lattice", "authors": [ "Vyacheslav Koval", "Ronald Meester", "Pieter Trapman" ], "comment": "24 pages", "journal": "Electronic Journal of Probability [Online], 17 (2012): 1-21", "doi": "10.1214/EJP.v17-1977", "categories": [ "math.PR" ], "abstract": "We study long-range percolation on the hierarchical lattice of order $N$, where any edge of length $k$ is present with probability $p_k=1-\\exp(-\\beta^{-k} \\alpha)$, independently of all other edges. For fixed $\\beta$, we show that the critical value $\\alpha_c(\\beta)$ is non-trivial if and only if $N < \\beta < N^2$. Furthermore, we show uniqueness of the infinite component and continuity of the percolation probability and of $\\alpha_c(\\beta)$ as a function of $\\beta$. This means that the phase diagram of this model is well understood.", "revisions": [ { "version": "v1", "updated": "2010-04-08T06:28:18.000Z" } ], "analyses": { "subjects": [ "60K35", "82B28" ], "keywords": [ "hierarchical lattice", "study long-range percolation", "infinite component", "percolation probability", "phase diagram" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.1251K" } } }