{ "id": "1004.1101", "version": "v3", "published": "2010-04-07T14:41:41.000Z", "updated": "2011-09-15T16:15:37.000Z", "title": "Lipschitz continuity of solutions of Poisson equations in metric measure spaces", "authors": [ "Renjin Jiang" ], "comment": "Potential Analysis, to appear", "categories": [ "math.AP" ], "abstract": "Let $(X,d)$ be a pathwise connected metric space equipped with an Ahlfors $Q$-regular measure $\\mu$, $Q\\in[1,\\infty)$. Suppose that $(X,d,\\mu)$ supports a 2-Poincar\\'e inequality and a Sobolev-Poincar\\'e type inequality for the corresponding \"Gaussian measure\". The author uses the heat equation to study the Lipschitz regularity of solutions of the Poisson equation $\\Delta u=f$, where $f\\in L^p_\\loc$. When $p>Q$, the local Lipschitz continuity of $u$ is established.", "revisions": [ { "version": "v3", "updated": "2011-09-15T16:15:37.000Z" } ], "analyses": { "subjects": [ "31C25", "31B05", "35B05", "35B45" ], "keywords": [ "metric measure spaces", "poisson equation", "connected metric space", "local lipschitz continuity", "sobolev-poincare type inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.1101J" } } }