{ "id": "1004.0582", "version": "v1", "published": "2010-04-05T07:36:45.000Z", "updated": "2010-04-05T07:36:45.000Z", "title": "Every planar graph without adjacent short cycles is 3-colorable", "authors": [ "Tao Wang" ], "comment": "14 pages, 16 figures", "categories": [ "math.CO" ], "abstract": "Two cycles are {\\em adjacent} if they have an edge in common. Suppose that $G$ is a planar graph, for any two adjacent cycles $C_{1}$ and $C_{2}$, we have $|C_{1}| + |C_{2}| \\geq 11$, in particular, when $|C_{1}| = 5$, $|C_{2}| \\geq 7$. We show that the graph $G$ is 3-colorable.", "revisions": [ { "version": "v1", "updated": "2010-04-05T07:36:45.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "adjacent short cycles", "planar graph", "adjacent cycles" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.0582W" } } }