{ "id": "1003.5569", "version": "v2", "published": "2010-03-29T15:25:25.000Z", "updated": "2010-03-30T15:01:23.000Z", "title": "Irreducibility of the Gorenstein locus of the punctual Hilbert scheme of degree 10", "authors": [ "Gianfranco Casnati", "Roberto Notari" ], "comment": "An error in Proposition 5.9 has been corrected.", "categories": [ "math.AG" ], "abstract": "Let $k$ be an algebraically closed field of characteristic 0 and let $H_G(d,N)$ be the open locus of the Hilbert scheme $H(d,N)$ corresponding to Gorenstein subschemes of degree $d$ in the projective N-space. We proved in a previous paper that $H_G(d,N)$ is irreducible for $d\\le9$ and $N\\ge1$. In the present paper we prove that also $H_G(10,N)$ is irreducible for each $N\\ge1$, giving also a complete description of its singular locus.", "revisions": [ { "version": "v2", "updated": "2010-03-30T15:01:23.000Z" } ], "analyses": { "keywords": [ "punctual hilbert scheme", "gorenstein locus", "irreducibility", "complete description", "singular locus" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.5569C" } } }