{ "id": "1003.4569", "version": "v1", "published": "2010-03-24T01:41:12.000Z", "updated": "2010-03-24T01:41:12.000Z", "title": "Counting all cubes in {0,1,...,n}^3", "authors": [ "Eugen J. Ionascu", "Rodrigo A. Obando" ], "comment": "24 pages, 5 figures", "categories": [ "math.NT", "math.RA" ], "abstract": "In this paper we describe a procedure of calculating the number cubes that have coordinates in the set {0,1,...,n}. We adapt the code that appeared in [11] developed to calculate the number of regular tetrahedra with coordinates in the set {0,1,...,n}. The idea is based on the theoretical results obtained in [13]. We extend then the sequence A098928 in the Online Encyclopedia of Integer Sequences to the first one hundred terms.", "revisions": [ { "version": "v1", "updated": "2010-03-24T01:41:12.000Z" } ], "analyses": { "subjects": [ "11D09" ], "keywords": [ "regular tetrahedra", "number cubes", "coordinates", "sequence a098928", "online encyclopedia" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.4569I" } } }