{ "id": "1003.3512", "version": "v2", "published": "2010-03-18T05:53:56.000Z", "updated": "2010-09-07T15:39:58.000Z", "title": "Rings of low rank with a standard involution", "authors": [ "John Voight" ], "comment": "17 pages; minor revisions", "categories": [ "math.NT", "math.RA" ], "abstract": "We consider the problem of classifying (possibly noncommutative) R-algebras of low rank over an arbitrary base ring R. We first classify algebras by their degree, and we relate the class of algebras of degree 2 to algebras with a standard involution. We then investigate a class of exceptional rings of degree 2 which occur in every rank n >= 1 and show that they essentially characterize all algebras of degree 2 and rank 3.", "revisions": [ { "version": "v2", "updated": "2010-09-07T15:39:58.000Z" } ], "analyses": { "keywords": [ "low rank", "standard involution", "first classify algebras", "exceptional rings", "arbitrary base ring" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.3512V" } } }