{ "id": "1003.3246", "version": "v1", "published": "2010-03-16T20:52:19.000Z", "updated": "2010-03-16T20:52:19.000Z", "title": "Rigidity of Entire self-shrinking solutions to curvature flows", "authors": [ "Albert Chau", "Jingyi Chen", "Yu Yuan" ], "comment": "10 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "We show that (a) any entire graphic self-shrinking solution to the Lagrangian mean curvature flow in ${\\mathbb C}^{m}$ with the Euclidean metric is flat; (b) any space-like entire graphic self-shrinking solution to the Lagrangian mean curvature flow in ${\\mathbb C}^{m}$ with the pseudo-Euclidean metric is flat if the Hessian of the potential is bounded below quadratically; and (c) the Hermitian counterpart of (b) for the K\\\"ahler Ricci flow.", "revisions": [ { "version": "v1", "updated": "2010-03-16T20:52:19.000Z" } ], "analyses": { "subjects": [ "53C44", "53A10" ], "keywords": [ "entire self-shrinking solutions", "lagrangian mean curvature flow", "space-like entire graphic self-shrinking solution", "hermitian counterpart", "euclidean metric" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.3246C" } } }