{ "id": "1003.3143", "version": "v1", "published": "2010-03-16T13:12:10.000Z", "updated": "2010-03-16T13:12:10.000Z", "title": "Deformation rings which are not local complete intersections", "authors": [ "Frauke M. Bleher", "Ted Chinburg", "Bart de Smit" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "We study the inverse problem for the versal deformation rings $R(\\Gamma,V)$ of finite dimensional representations $V$ of a finite group $\\Gamma$ over a field $k$ of positive characteristic $p$. This problem is to determine which complete local commutative Noetherian rings with residue field $k$ can arise up to isomorphism as such $R(\\Gamma,V)$. We show that for all integers $n \\ge 1$ and all complete local commutative Noetherian rings $\\mathcal{W}$ with residue field $k$, the ring $\\mathcal{W}[[t]]/(p^n t,t^2)$ arises in this way. This ring is not a local complete intersection if $p^n\\mathcal{W}\\neq\\{0\\}$, so we obtain an answer to a question of M. Flach in all characteristics.", "revisions": [ { "version": "v1", "updated": "2010-03-16T13:12:10.000Z" } ], "analyses": { "subjects": [ "11F80", "11R32", "20C20", "11R29" ], "keywords": [ "local complete intersection", "complete local commutative noetherian rings", "residue field", "finite dimensional representations", "versal deformation rings" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.3143B" } } }