{ "id": "1003.2305", "version": "v1", "published": "2010-03-11T11:05:43.000Z", "updated": "2010-03-11T11:05:43.000Z", "title": "On the A-Obstacle Problem and the Hausdorff Measure of its Free Boundary", "authors": [ "S. Challal", "A. Lyaghfouri", "J. F. Rodrigues" ], "categories": [ "math.AP" ], "abstract": "In this paper we prove existence and uniqueness of an entropy solution to the A-obstacle problem, for L^1 data. We also extend the Lewy-Stampacchia inequalities to the general framework of L^1 data, and show convergence and stability results. We then prove that the free boundary has finite N-1 Hausdorff measure, which completes previous works on this subject by Caffarelli for the Laplace operator and by Lee and Shahgholian for the p-Laplace operator when p>2.", "revisions": [ { "version": "v1", "updated": "2010-03-11T11:05:43.000Z" } ], "analyses": { "subjects": [ "35R35", "35B05", "35J60" ], "keywords": [ "hausdorff measure", "free boundary", "a-obstacle problem", "stability results", "general framework" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.2305C" } } }