{ "id": "1003.2170", "version": "v3", "published": "2010-03-10T18:47:55.000Z", "updated": "2011-08-29T22:58:07.000Z", "title": "New definite integrals and a two-term dilogarithm identity", "authors": [ "F. M. S. Lima" ], "comment": "10 pages, 1 figure. Accepted for publication: Indagat. Mathematicae (08/29/2011)", "journal": "Indagationes Mathematicae 23 (2012) 1-9", "doi": "10.1016/j.indag.2011.08.008", "categories": [ "math.CA", "math.NT" ], "abstract": "Among the several proofs known for $\\sum_{n=1}^\\infty{1/n^2} = {\\pi^2/6}$, the one by Beukers, Calabi, and Kolk involves the evaluation of $\\,\\int_0^1 {\\int_0^1{1/(1-x^2 y^2) \\, dx} \\, dy}$. It starts by showing that this double integral is equivalent to $\\frac34 \\sum_{n=1}^\\infty{1/n^2}$, and then a non-trivial \\emph{trigonometric} change of variables is applied which transforms that integral into $\\,{\\int \\int}_T \\: 1 \\; du \\, dv$, where $T$ is a triangular domain whose area is simply ${\\pi^2/8}$. Here in this note, I introduce a hyperbolic version of this change of variables and, by applying it to the above integral, I find exact closed-form expressions for $\\int_0^\\infty{[\\sinh^{-1}{(\\cosh{u})}-u] d u}$, $\\,\\int_{\\alpha}^\\infty{[u-\\cosh^{-1}{(\\sinh{u})}] d u}$, and $\\,\\int_{\\,\\alpha/2}^\\infty{\\ln{(\\tanh{u})} \\: d u}$, where $\\alpha = \\sinh^{-1}(1)$. From the latter integral, I also derive a two-term dilogarithm identity.", "revisions": [ { "version": "v3", "updated": "2011-08-29T22:58:07.000Z" } ], "analyses": { "subjects": [ "11M06", "40C10", "33B30" ], "keywords": [ "two-term dilogarithm identity", "definite integrals", "exact closed-form expressions", "triangular domain", "hyperbolic version" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.2170L" } } }