{ "id": "1003.2060", "version": "v3", "published": "2010-03-10T09:50:23.000Z", "updated": "2011-02-03T22:49:06.000Z", "title": "Zeros of the Hurwitz zeta function in the interval (0,1)", "authors": [ "Davide Schipani" ], "comment": "Some reformulation done. Accepted for publication in Journal of Combinatorics and Number Theory", "categories": [ "math.NT" ], "abstract": "We first give a condition on the parameters $s,w$ under which the Hurwitz zeta function $\\zeta(s,w)$ has no zeros and is actually negative. As a corollary we derive that it is nonzero for $w\\geq 1$ and $s\\in(0,1)$ and, as a particular instance, the known result that the classical zeta function has no zeros in $(0,1)$.", "revisions": [ { "version": "v3", "updated": "2011-02-03T22:49:06.000Z" } ], "analyses": { "keywords": [ "hurwitz zeta function", "classical zeta function", "parameters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.2060S" } } }