{ "id": "1003.1984", "version": "v1", "published": "2010-03-09T21:21:52.000Z", "updated": "2010-03-09T21:21:52.000Z", "title": "On the Polya permanent problem over finite fields", "authors": [ "Gregor Dolinar", "Alexander E. Guterman", "Bojan Kuzma", "Marko Orel" ], "comment": "25 pages", "categories": [ "math.CO" ], "abstract": "Let $\\FF$ be a finite field of characteristics different from two. We show that no bijective map transforms permanent into determinant when the cardinality of $\\FF$ is sufficiently large. We also give an example of non-bijective map when $\\FF$ is arbitrary and an example of a bijective map when $\\FF$ is infinite which do transform permanent into determinant. The developed technique allows us to estimate the probability of the permanent and the determinant of matrices over finite fields to have a given value. Our results are also true over finite rings without zero divisors.", "revisions": [ { "version": "v1", "updated": "2010-03-09T21:21:52.000Z" } ], "analyses": { "subjects": [ "15A15", "15A33" ], "keywords": [ "finite field", "polya permanent problem", "bijective map transforms permanent", "determinant", "transform permanent" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.1984D" } } }