{ "id": "1003.1880", "version": "v2", "published": "2010-03-09T14:27:34.000Z", "updated": "2014-02-06T09:10:34.000Z", "title": "On an inverse problem for anisotropic conductivity in the plane", "authors": [ "Gennadi Henkin", "Matteo Santacesaria" ], "comment": "9 pages, no figure", "journal": "Inverse Problems 26, 2010, 095011", "doi": "10.1088/0266-5611/26/9/095011", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "Let $\\hat \\Omega \\subset \\mathbb R^2$ be a bounded domain with smooth boundary and $\\hat \\sigma$ a smooth anisotropic conductivity on $\\hat \\Omega$. Starting from the Dirichlet-to-Neumann operator $\\Lambda_{\\hat \\sigma}$ on $\\partial \\hat \\Omega$, we give an explicit procedure to find a unique domain $\\Omega$, an isotropic conductivity $\\sigma$ on $\\Omega$ and the boundary values of a quasiconformal diffeomorphism $F:\\hat \\Omega \\to \\Omega$ which transforms $\\hat \\sigma$ into $\\sigma$.", "revisions": [ { "version": "v2", "updated": "2014-02-06T09:10:34.000Z" } ], "analyses": { "subjects": [ "35R30", "32G05" ], "keywords": [ "inverse problem", "smooth anisotropic conductivity", "smooth boundary", "dirichlet-to-neumann operator", "boundary values" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010InvPr..26i5011H" } } }