{ "id": "1003.1707", "version": "v1", "published": "2010-03-08T20:13:34.000Z", "updated": "2010-03-08T20:13:34.000Z", "title": "The gradient flow of the $L^2$ curvature energy near the round sphere", "authors": [ "Jeff Streets" ], "categories": [ "math.DG", "math.AP" ], "abstract": "We investigate the low-energy behavior of the gradient flow of the $L^2$ norm of the Riemannian curvature on four-manifolds. Specifically, we show long time existence and exponential convergence to a metric of constant sectional curvature when the initial metric has positive Yamabe constant and small initial energy.", "revisions": [ { "version": "v1", "updated": "2010-03-08T20:13:34.000Z" } ], "analyses": { "keywords": [ "gradient flow", "round sphere", "curvature energy", "small initial energy", "long time existence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.1707S" } } }