{ "id": "1003.1349", "version": "v1", "published": "2010-03-06T03:52:17.000Z", "updated": "2010-03-06T03:52:17.000Z", "title": "The minimal sequence of Reidemister moves bringing the diagram of $(n+1,n)$-torus knot to that of $(n,n+1)$-torus knot", "authors": [ "Chuichiro Hayashi", "Miwa Hayashi" ], "comment": "10pages, 17 figures", "categories": [ "math.GT" ], "abstract": "Let $D(p,q)$ be the usual knot diagram of the $(p,q)$-torus knot, that is, $D(p,q)$ is the closure of the $p$-braid $(\\sigma_1^{-1} \\sigma_2^{-1}... \\sigma_{p-1}^{-1})^q$. As is well-known, $D(p,q)$ and $D(q,p)$ represent the same knot. It is shown that $D(n+1,n)$ can be deformed to $D(n,n+1)$ by a sequence of $\\{(n-1)n(2n-1)/6 \\} + 1$ Reidemeister moves, which consists of a single RI move and $(n-1)n(2n-1)/6$ RIII moves. Using cowrithe, we show that this sequence is minimal over all sequences which bring $D(n+1,n)$ to $D(n,n+1)$.", "revisions": [ { "version": "v1", "updated": "2010-03-06T03:52:17.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "torus knot", "reidemister moves bringing", "minimal sequence", "single ri move", "usual knot diagram" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.1349H" } } }