{ "id": "1003.0982", "version": "v1", "published": "2010-03-04T08:17:05.000Z", "updated": "2010-03-04T08:17:05.000Z", "title": "Classifying $p$-groups via their multiplier", "authors": [ "Peyman Niroomand" ], "categories": [ "math.GR" ], "abstract": "The author in $($On the order of Schur multiplier of non-abelian $p$-groups. J. Algebra (2009).322: 4479--4482$)$ showed that for any $p$-group $G$ of order $p^n$ there exists a nonnegative integer $s(G)$ such that the order of Schur multiplier of $G$ is equal to $p^{\\f{1}{2}(n-1)(n-2)+1-s(G)}$. Furthermore, he characterized the structure of all non-abelian $p$-groups $G$ when $s(G)=0$. The present paper is devoted to characterization of all $p$-groups when $s(G)=2$.", "revisions": [ { "version": "v1", "updated": "2010-03-04T08:17:05.000Z" } ], "analyses": { "subjects": [ "20D15", "20E34" ], "keywords": [ "schur multiplier", "classifying", "non-abelian" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.0982N" } } }