{ "id": "1003.0689", "version": "v2", "published": "2010-03-02T21:37:19.000Z", "updated": "2010-12-19T15:56:05.000Z", "title": "On the Clifford-Fourier transform", "authors": [ "H. De Bie", "Y. Xu" ], "comment": "Some small changes, 30 pages, accepted for publication in IMRN", "categories": [ "math.CA", "math.CV" ], "abstract": "For functions that take values in the Clifford algebra, we study the Clifford-Fourier transform on $R^m$ defined with a kernel function $K(x,y) := e^{\\frac{i \\pi}{2} \\Gamma_{y}}e^{-i }$, replacing the kernel $e^{i }$ of the ordinary Fourier transform, where $\\Gamma_{y} := - \\sum_{j