{ "id": "1003.0637", "version": "v1", "published": "2010-03-02T18:02:10.000Z", "updated": "2010-03-02T18:02:10.000Z", "title": "The problem of Buchstaber number and its combinatorial aspects", "authors": [ "Anton Ayzenberg" ], "comment": "14 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "For any simplicial complex on m vertices a moment-angle complex Z_K embedded in C^m can be defined. There is a canonical action of a torus T^m on Z_K, but this action fails to be free. The Buchstaber number is the maximal integer s(K) for which there exists a subtorus of rank s(K) acting freely on Z_K. The similar definition can be given for real Buchstaber number. We study these invariants using certain sequences of simplicial complexes called universal complexes. Some general properties of Buchstaber numbers follow from combinatorial properties of universal complexes. In particular, we investigate the additivity of Buchstaber invariant.", "revisions": [ { "version": "v1", "updated": "2010-03-02T18:02:10.000Z" } ], "analyses": { "subjects": [ "05E45", "05E18" ], "keywords": [ "combinatorial aspects", "universal complexes", "real buchstaber number", "buchstaber invariant", "combinatorial properties" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.0637A" } } }