{ "id": "1003.0509", "version": "v3", "published": "2010-03-02T07:01:40.000Z", "updated": "2010-04-27T13:10:56.000Z", "title": "Congruences for an arithmetic function from 3-colored Frobenius partitions", "authors": [ "Laizhong Song", "Xinhua Xiong" ], "comment": "5 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $a(n)$ defined by $\\sum_{n=1}^{\\infty}a(n)q^n := \\prod_{n=1}^{\\infty}\\frac{1}{(1-q^{3n})(1-q^n)^3}.$ In this note, we prove that for every non-negative integer $n$, a(15n+6) \\equiv 0\\pmod{5}, a(15n+12) \\equiv 0\\pmod{5}. As a corollary, we obtained some results of Ono", "revisions": [ { "version": "v3", "updated": "2010-04-27T13:10:56.000Z" } ], "analyses": { "keywords": [ "arithmetic function", "frobenius partitions", "congruences" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.0509S" } } }