{ "id": "1002.4796", "version": "v1", "published": "2010-02-25T14:31:42.000Z", "updated": "2010-02-25T14:31:42.000Z", "title": "Transformations of one-dimensional Gibbs measures with infinite range interaction", "authors": [ "Frank Redig", "Feijia Wang" ], "journal": "Markov Proc. Rel. Fields, 16, pp. 737-752, 2010", "categories": [ "math.PR", "cond-mat.stat-mech", "math-ph", "math.MP" ], "abstract": "We study single-site stochastic and deterministic transforma- tions of one-dimensional Gibbs measures in the uniqueness regime with infinite-range interactions. We prove conservation of Gibbsianness and give quantitative estimates on the decay of the transformed potential. As examples, we consider exponentially decaying potentials, and potentials decaying as a power-law.", "revisions": [ { "version": "v1", "updated": "2010-02-25T14:31:42.000Z" } ], "analyses": { "keywords": [ "one-dimensional gibbs measures", "infinite range interaction", "transformations", "study single-site stochastic", "uniqueness regime" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.4796R" } } }