{ "id": "1002.4087", "version": "v2", "published": "2010-02-22T09:48:55.000Z", "updated": "2014-12-16T11:19:57.000Z", "title": "SBV regularity for Hamilton-Jacobi equations in $\\mathbb R^n$", "authors": [ "Stefano Bianchini", "Camillo De Lellis", "Roger Robyr" ], "comment": "15 pages", "categories": [ "math.AP" ], "abstract": "In this paper we study the regularity of viscosity solutions to the following Hamilton-Jacobi equations $$ \\partial_t u + H(D_{x} u)=0 \\qquad \\textrm{in} \\Omega\\subset \\mathbb R\\times \\mathbb R^{n} . $$ In particular, under the assumption that the Hamiltonian $H\\in C^2(\\mathbb R^n)$ is uniformly convex, we prove that $D_{x}u$ and $\\partial_t u$ belong to the class $SBV_{loc}(\\Omega)$.", "revisions": [ { "version": "v1", "updated": "2010-02-22T09:48:55.000Z", "title": "SBV regularity for Hamilton-Jacobi equations in $\\R^n$", "abstract": "In this paper we study the regularity of viscosity solutions to the following Hamilton-Jacobi equations $$ \\partial_t u + H(D_{x} u)=0 \\qquad \\textrm{in} \\Omega\\subset \\R\\times \\R^{n} . $$ In particular, under the assumption that the Hamiltonian $H\\in C^2(\\R^n)$ is uniformly convex, we prove that $D_{x}u$ and $\\partial_t u$ belong to the class $SBV_{loc}(\\Omega)$.", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-12-16T11:19:57.000Z" } ], "analyses": { "subjects": [ "35B65", "35D40", "49Q15", "34H05" ], "keywords": [ "hamilton-jacobi equations", "sbv regularity", "viscosity solutions", "assumption" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00205-010-0381-z", "journal": "Archive for Rational Mechanics and Analysis", "year": 2011, "month": "Jun", "volume": 200, "number": 3, "pages": 1003 }, "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011ArRMA.200.1003B" } } }