{ "id": "1002.3911", "version": "v2", "published": "2010-02-20T16:37:21.000Z", "updated": "2010-05-26T05:44:17.000Z", "title": "Parameter estimations for SPDEs with multiplicative fractional noise", "authors": [ "Igor Cialenco" ], "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "We study parameter estimation problem for diagonalizable stochastic partial differential equations driven by a multiplicative fractional noise with any Hurst parameter $H\\in(0,1)$. Two classes of estimators are investigated: traditional maximum likelihood type estimators, and a new class called closed-form exact estimators. Finally the general results are applied to stochastic heat equation driven by a fractional Brownian motion.", "revisions": [ { "version": "v2", "updated": "2010-05-26T05:44:17.000Z" } ], "analyses": { "subjects": [ "60H15", "62F12", "60G22" ], "keywords": [ "multiplicative fractional noise", "parameter estimation", "stochastic partial differential equations driven", "traditional maximum likelihood type estimators", "stochastic heat equation driven" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.3911C" } } }