{ "id": "1002.3896", "version": "v1", "published": "2010-02-22T15:52:11.000Z", "updated": "2010-02-22T15:52:11.000Z", "title": "Almost sure asymptotics for the random binary search tree", "authors": [ "Matthew I. Roberts" ], "comment": "12 pages, 2 figures", "categories": [ "math.PR" ], "abstract": "We consider a (random permutation model) binary search tree with n nodes and give asymptotics on the loglog scale for the height H_n and saturation level h_n of the tree as n\\to\\infty, both almost surely and in probability. We then consider the number F_n of particles at level H_n at time n, and show that F_n is unbounded almost surely.", "revisions": [ { "version": "v1", "updated": "2010-02-22T15:52:11.000Z" } ], "analyses": { "subjects": [ "60J80", "68W40", "60C05" ], "keywords": [ "random binary search tree", "sure asymptotics", "random permutation model", "loglog scale", "saturation level" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.3896R" } } }